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NOTATION 

(2, r, c p )  System of cylindrical coordinates associated with the axis of the 
cone. 

(u, v ,  w) Axial, radial, circumferential components of the velocity corre- 
sponding to Ccr. 

Critical velocity of sound. c r  
2 

P Pressure divided by the product of the upstream density and Ccr. 

a1 B Parameters encountered in the notation for finite differences of 

azx 
acp 

Coefficient of the viscosity term in 7 . 0 

X 

.k, 33, e 

r 
r = G(z,cp) 

r * F(z, Q) 

Vector of the components (u, v ,  w, p). 

Square matrices of order 4 dependent on X. 

Vector with 4 components dependent on X. 

Equation of the obstacle. 

Equation of the shock. 

E_=,_, - Auxiliary variable used to facilitate the notation of the conditions 
at the limits 

Pressure behind the shock. 

Pressure in  the upstream flow (0.0793 for the example studied). 

PC 

pm 

Parameter defining the intensity of the shock. I = l - -  p a  
PC 

i 

Bk 

Angle of incidence of the wind. 

Angle of half-aperture of the circular cone. 

Mach number upstream. 

i 



Angle of incidence fo r  which the intensity of the shock becomes 
C 

i 
4 zero at cp = n . 

h Ratio b/a of the axes for the cone with an elliptical section. 

P Angle of deflection (half-aperture angle of the circular cone tangent 
at cp = 7~/2). 
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SUPERSONIC FLOWS AROUND CONES AT INCIDENCE 

Re& Gonidou* 

ABSTRACT. The paper presents some numerical results ob- 
tained at Mach 7 for the supersonic flow of a perfect gas around 
conical bodies (of circular or  elliptical cross sections) at 
incidence. 

The method of calculation employed is a direct method 
termed the method of ffestablishmentff of the solution due to 
Babenko, Voskresenskiy, Lyubimov and Rusanov. 

angles of incidence greater than the half-aperture angle of the 
circular cone. 

Starting with a certain incidence, the singular point of en- 
tropy located on the upper surface moves from the surface of the 
body toward the interior of the flow. Numerical instabilities 
then appear which make it impossible to continue the study up to 
higher angles of incidence where the shock becomes evanescent. 

This study shows that the shock wave remains closed for 

Introduction / 12** 
'p = 1 8 0 °  The numerical determination of 

the flow of a perfect gas around 
cones (circular or not has been the 
subject of many studies in the last 
few years. 

z 

Various reverse or  direct 
methods have been used to this end: 
among the latter, the method of 
"establishment" of Babenko, 
Voskresenskiy, Lyubimov and Ru- 
sanov (ref. 1; we shall designate it 
more conveniently by the BVLR 
method) seems to be of particular 

Figure 1. Coordinate System. interest; it has made it possible to 
obtain tables of supersonic flows 

around circular cones at incidence which complete the Kopal tables. 

*The author expresses his sincere appreciation to Jean-Piere Guiraud, 
under whose direction this work was carried out. 

**Numbers in the margin indicate pagination in the foreign text. 
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We chose this method to calculate the supersonic flow (Mach 7) around cir- 
cular cones at incidences close to the half-aperture angle of the cone and around 
cones of elliptical section at similar incidence. 

The analysis of the BVLR method and the detailed elaboration of the program 
were carried out with the very efficient assistance of the S E W  (Socidtte d'lhonomie 
et de Mathematique Applique'es [Economics and Applied Mathematics Society] , 
Paris). The calculations were performed on electronic equipment of the SIA 
(Soci6td d'Informatique Appliquhe [Applied Information Science Society]) 

- .  

Figure 2. Grid Used for the Finite Difference Scheme. 
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Formulation of the Problem 

The BVLR method [ 11 reduces the study of the supersonic flow around a 
conical obstacle to the solution of a quasi-linear system with partial derivatives 

J X  ax ax 
JL bS 39 

A - + :o - + e - + r = 0. 

from certain initial conditions in  a plane z = zo, taking into account the conditions 
of the limits at the boundaries 

[ = 0 (tangential velocity at the obstacle), 
6 = 1 (Rankine-Hugoniot conditions on the shock), 

and on the periodicity in cp of the solution being sought. 

The algorithm of the proposed calculation makes it possible to determine the 
flow in a plane z1 = z + A z  from a known flow in plane z by a method of finite 0 0 
differences; we shall represent the grid in ( 6 ,  c p )  in  a half-plane perpendicular to 
the axis of the cone. 

The flow in plane z1 is obtained in  an iterative manner.after the successive 
solution of independent systems on each ray cp = constant, by means of an appro- 
priate discretization of the partial differential equations. 

On each radius: 

a) The direct progression brings the condition relative to the obstacle on the 
shock and thus completes the Rankine-Hugoniot conditions, 

b) The solution of the linearized system on the shock provides the position of 
the latter and the downstream aerodynamic quantities, 

c) The inverse progression makes use of the preceding information for com- 
pletely .determining the flow between the shock and the obstacle. 

This algorithm of calculation makes it possible to obtain the supersonic flow 
around an obstacle of conical shape asymptotically. The solution is established 
in  the course of the progression in z starting from any initial data in a plane of 
abscissa z 

conical flow being sought. 
When z tends to infinity, the solution obtained converges toward the 0' 

This so-called 'lestablishmentll method has a precise physical meaning; indeed, 
it is known that at a great distance from the apex, the shape of the nose of an ogive 
practically no longer intervenes on the upstream flow. 
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The convergence of the solution obtained toward that of stationary flow 
around conical bodies is not demonstrated theoretically, but it is fully corrobo- 
rated by the analysis of the results of numerous calculations. 

* 

Remarks: 

1. BVLR introduce certain parameters into the difference equations for pur- 
poses of stability: (J carr ies  a viscosity count, CY and 6 balance the iterative 
scheme. The choice of: Q = 
ror in the different cases treated. 

CY- f i  = l om2  gives a reasonable truncation er- 

2. The stability of the method is related to conditions which bring in the 
field of the velocities and the grid with finite differences. The stability conditions 
are no longer verified at high incidences for a scheme utilizing a linear function 
5 between the shock and the obstacle. These considerations have determined the 
scope of the use of the algorithm in our case. 

3. The matrices . e ,  3, e employed here are slightly different from those of 
BVLR [ 11 ; indeed, we have reduced the dimensions of vector X to 4 components 
(u, v, w, p) by expressing the density as a function of the pressure and velocity. 

Circular Cones at Incidence 

The above-described BVLR method was  programmed on a data processor, 
and a special study was made of supersonic flow at Mach 7 around a circular cone 
(C) of half-aperture /3, = 9" at different incidences i ranging from 5 to 11". 

P The initial data were given by 
flow around a circular cone with a 
half-aperture of 10" at a 5" incidence 
(BVLR tables [ 11). We determined 
the flow around (C) at a 5" incidence, 
then increased the incidence (5, 7, 
9, 10, l l " ,  respectively), each 
time taking the flow obtained in  the 
preceding stage as the initial data. 

0.7 

0.5 

0.3 
The grid employed consisted of 

16 "radii" on a half-circumference 
and 10 "parallels" ( 6 = constant) 
between the shock and the obstacle 
(obviously, symmetry considerations 
on axes cp = 0 and cp = 7~ replaced the 
more general conditions of 277 - 
periodicity in cp of the solution). 

0.1 

0 

Figure 3. 

R *  

Pressure on the Circular 
We  focused our attention on some Cone (C) at Incidence. 

specific types of behavior: pressure 
and circumferential component of the velocity on the body. W e  also give a more 
overall course of the flow with isopiestic curves and the field of entropic direction 
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0.08; 

0.666 

0.59i 

Figure 4. Curves p = Constant Around (C)  at 
10" Incidence. 

(in a section by a half-plane 
perpendicular to the axis of 
the cone, at each point we 
draw a small segment whose 
direction gives the direction 
of the tangent to the isen- 
trope). 

1. Pressure  on the Obstacle 

Up to an incidence of 5', 
the distribution of pressure 
on the obstacle as a function 
of angle cp is continuous, de- 
creasing, and the curve has 
the shape of an a rc  of sinus- 
oid. When the incidence in- 
creases,  a pressure mini- 
mum appears on the "leeward" 
side, this minimum being very 
marked for an incidence of 11". 

the half-aperture angle of the 
cone, there exists a zone 
which is in a depression rela- 
tive to the flow at infinity; 
the minimum amounts to 
0.04, i. e. , approximately 
one-half of the upstream 
pressure for i = 11". 

For incidences greater than - /14 

Let us also note that for 
an angle cp close to 85", the 
pressure on the obstacle is 
practically independent of 
the incidence. 

The pressure maximum 
is located on the axis of sym- 
metry of the obstacle on the 
windward side; the minimum 
is also on the body, but at 

cp = 150". A local maximum exists on the axis of symmetry inside the flow for 
cp = 180'. 

2. Intensity of the Shock 

. We measured the intensity of the shock by the ratio I = pc - Po3 , representing 
PC 

the relative discontinuity of the pressures at each point of the grid located on the 
shock. 
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I I The intensity of the shock on the 
1 windward side decreases rapidly when the 

incidence increases. A polynomial ex- 
0.8 trapolation from values of I (at cp = n) 

seems to indicate that the shock wave ue- 
0.6 , generates into a Mach wave on the axis 

of symmetry on the leeward side for an 
0.4 incidence close to ic = 12". At lower 

incidences, the shock wave remains 
closed all around the obstacle, and calcu- 
lations carried out for 1 = 10" and 11" con- 

' firm this phenomenon. 

1 

I 

Figure 5. Intensity of the Shock for  3. Field of Velocities Different Incidences. 

(& = 9", Ma, = 7). The axial and radial components of 
the velocity vary regularly in the entire 
flow and on the body in particular. On the 
other hand, the circumferential component 
exhibits a n  essentially nonlinear behavior 
and, in particular, presents very substan- 
tial relative variations on the obstacle. 

W 

0.5 

0 , 4  

The function w(q) has a maximum on 
the leeward side; when the incidence in- 
creases, this maximum moves in the di- 
rection of increasing cp ; for i > 9", the 
slope becomes very pronounced, and the 
curve becomes less regular. 

0.2 

0.1 

u / 4  
Figures 7 and 8 show that in the vi- - /15 

Figure 6. Component w on the Circu- cinity of the axis of symmetry of the lee- 
ward side, the shock is very close to the 
upstream Mach cone for flows with large 
incidences; the intensity of the shock is 
very week in this region. 

lar Cone (C). 

= 9", Ma, = 7). (8, 

In Figure 8 we note that the tangent to the isentrope passing through point M 
is directed toward the inside of the flow (above the l ine [ = constant passing 
through this point). It therefore appears that the node S ,  a singular point of en- 
tropy, which at smaller incidences is at the intersection of H of the body and of 
the axis of symmetry (Fig. 7), has a tendency to move toward the interior of the 
flow when the incidence increases as indicated in Fig. 8. This clearly illustrates 
the fact that the entropy is constant on the obstacle, as was recognized long ago 
by Ferri [21. 

These numerical results agree with a study of Melnik [31, which reports on 
the behavior of entropy singularities in the flow around a circular cone as a func- 
tion of incidence. 
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t .  

Figure 7. Field of Entropic Direction. 

= go, M = 7), i =  10'. 'BK 00 

c 

t 

Figure 8. Field of Entropic Direction. 
(/3 = go, M = 7), i =  11'. K OD 

Unfortunately, the BVLR method employed here with the above-described grid 
becomes unstable as a result of these singularities and no more definite conclu- 
sions can be drawn regarding the preceding phenomenon. 

This numerical instability also makes it impossible to continue the use of this - /16 
method at higher incidences up to the appearance of an evanescent shock wave. 
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Elliptical Cones at Incidence 

Using initial data corresponding to the flow around a circular cone of 20" 
half-aperture at a 5" incidence (BVLR Tables [ l]), we established the flow at 
Mach 7 around different cones of elliptical section having a 20" angle of deflection 
p and whose ratio of axes varies from 1 to 113. 

The flow around an elliptical cone E2 of ratio b/a = X 2  is obtained at the limit, 
for z tending to infinity, of flow around an ogive whose node is constituted by an el- 
liptical cone E ( A  ) ending in cone E2. The final cone E2 and frontal cone El are 
joined by an intermediate portion with a continuous curvature (here a polynomial 
function of z of degree 5 on each radius), We studied elliptical cones characterized 
by A. = 0.8, 0.64, 0.5, 0.4 and 1/3, respectively, retaining the same deflection 
(i.e., with the starting circular cone as the tangent cone). 

1 1  

1 

When the ratio X becomes less than 0.5, the curvature varies rapidly in the 
vicinity of the major axis and it is important to use a sufficiently fine grid (32 
radii on a half circumference) i n  order to give a true representation of variations 
of the aerodynamic quantities. 

Cone (E) of elliptical section of ratio b/a = 1/3 was studied at different inci- 
dences i = 5, 7 ,  and 9" in a manner analogous to that of the circular cone. 

0,s 

I 

0.3 

Upstream pressure 

0 X/C 3n/C A 9  

Figure 9. Pressure on Elliptical Cone (E) at 
Incidence. 

@ = 20", X = 1/3, Moo = 7) 
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1. Pressure on the Obstacle. 

The pressure on the body varies little on the windward side, presents a very 
pronounced maximum corresponding to the regions of high curvature when cp is 
slightly less than 7/2, then decreases rapidly to values close to the upstream 
pres sur e. 

For incidences greater than 5", the minimum is located outside the axis of 
symmetry on the leeward side; when the incidence increases, this minimum is 
pronounced and is surrounded by a zone in depression relative to the upstream 
flow, as in the case of a circular cone. 

Figure 10. Curves p = Constant Around (E) at 9" Incidence. 

(p = 20", X = 1/3, M, = 7) 
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\ I 0.6 I \\ \\ I I 

Incidence 

0.2 

n /2 3 n  /C r v  

Figure 11. Intensity of the Shock for 
Different Incidences. 

At  90" incidence, the pressure on the 
obstacle presents low-amplitude oscilla- 
tions on the leeward side; the region where 
this phenomenon appears is a zone of marked 
depression (this may be due to an inaccuracy 
in  the numerical results), and the shape of 
the isopiestic curves is much less regular 
in this region. 

The pressure maximum is located on 
the obstacle for cp close to 80°, and the 
minimum is then in the interior of the slope 
near the body for cp 135". The ratio of 
the extrema is of the order of 20, and the 
region of the obstacle with a high curvature 
on the leeward side presents very high pres- 
sure gradients, as shown in Fig. 10 by the 
density of the network of curves in this zone. 

(r-l = 20°, A = 1/3, Ma, = 7) 

2. Intensity of the Shock. 

Practically constant on the windward side, I passes through a maximum at cp 
close to 80", then decreases linearly until it approaches the axis of symmetry on 
the leeward side. 

A polynomial extrapolation from values of I and the axis of symmetry deter- 
mines at about 13" the incidence ic for which the shock degenerates into a Mach 
wave for cp = 71. 

W 

0.4 

0.2 

0 

-0.1 

1 n / 4  n/2 3 x  /c 

Figure 12. Component w on the Elliptical Cone (E). 

(II. = 20°, b/a = 1/3, Ma, = 7) 
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3. Field of Velocities. 

The circumferential component of the velocity on the obstacle presents the 
minimum on the windward side; this component becomes zero before cp = 7d2 
(this point corresponds to a saddle point of the network of isentropic curves) and 
passes through the maximum on the leeward side before becoming zero again at 
Cp = 7 .  The curve w ( c p )  has very pronounced oscillations on the leeward side for 
9" incidence (dotted line in Fig. 12). 

/la 

Generally, the variations of w are very appreciable when the incidence in? 
creases; the convergence toward the conical solution is slower for this aerodynamic 
quantity. 

~~ ~~~ 

, Figure 13. Fields of Entropic Direction. 
(i = go), (11. = 20", b/a = 1/3, Moo= 7) 

, 
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The network of isentropic curves presents a saddle point on the obstacle at 
the point where w becomes zero, and there a r e  two nodes on the axis of symmetry. 
These singularities a r e  seen in Fig. 13. 

b 

For 11" incidence, we observe the same instability phenomenon as in the case 
of the circular cone, probably due to a singularity of the entropy located leeward 
outside the axis of symmetry. 

4. Remarks 

Since the convergence of the BVLR method is related to the slope of the char- 
acteristics (chapter IV of the first part  of [l]), the flow becomes established much 
more rapidly on the windward side, where the shock is more violent; the values 
of the aerodynamic variables are much more regular there, and even in the cases 
of instability encountered, we assume that the precision of the calculations for 
cp F 10, n/21 is excellent. 

Conclusion - /I9 

The BVLR method makes it possible to calculate the flow around conical 
obstacles at appreciable incidences; it appears that the shock wave remains closed 
even at incidences such that a part of the obstacle on the leeward side seems to be 
"protected" from the wind. 

This brings out the fundamental differ- 
ences between the cone and the dihedral at 
incidence, due to the respectively tridimen- 
sional and bidimensional character of the - - flows. 

T 

At high incidences, a depression zone ex- 
ists downstream i n  the interior of the flow 
around the cone (at 9" incidence this region is 
quite sizable in the flow around (E), as shown 
by Figure 10). 

When the incidence has reached a certain value ic (approximately 12 and 13" 

respectively for the cones C and E), the depression zone extends up to the upstream ~ 

flow, from which it is separated by a Mach wave (or a shock of zero intensity). I 

We have adopted a grid with a constant pitch in  cp and used the linear function 
between the shock and the obstacle (in order to facilitate the programming in cer- 
tain obvious ways). 

It should be possible to construct a grid with a variable pitch in order to ex- 
tend the scope of application of the method 

a) by multiplying the number of radii in  the high-curvature regions of the ob- 
stacle in order to study the flow around cones approaching the delta wing in shape; 

b) by choosing a nonlinear function ( between the shock and the obstacle in or- 
der  to t ry  to estimate the numerical instabilities which arise at high incidences. 
12 



However, it is not certain that the solution is established satisfactorily on 
the leeward side at incidences greater than ic (where the shock becomes evanes- 
cent) since the slope of the characteristics becomes low in the depression zone, 
and we then observe that the disturbances are damped very slowly in this region. 

On the other hand, it is very probable that the finite difference scheme repre- 
sents the flow imperfectly in the vicinity of the singularities of entropy; a satis- 
factory local treatment of the singular points is predicated on a complete mathe- 
matical analysis of the phenomena involved. 

Let us specify some technical points about the program used: for a grid ( t ,  
c p )  of a maximum of 700 points, the storage requirement for the data processor 
is less than 40,000 memory locations (the size of the grid could be slightly re- 
duced when needed). The establishment of a flow around the conical body, virtually 
independent of the precision of the starting data (chosen to be compatible) takes up 
approximately 1 hour of control data CDC 3600 with a (10.32) grid. The program 
is entirely written in Fortran language. 

Manuscript submitted on July 10,  1967. 
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